학회/협회소식         회원 동정

[소식] 서울대 장호원 교수팀, 초저전력으로 AI 연산 수행하는 뉴로모픽 하드웨어 개발

작성자 : 관리자
조회수 : 155

[기사 전문 보기] https://www.aitimes.kr/news/articleView.html?idxno=32503


서울대학교 공과대학은 재료공학부 장호원 교수 공동연구팀이 초저전력으로 인공지능(AI) 연산을 수행할 수 있는 뉴로모픽(Neuromorphic) 하드웨어를 개발했다고 밝혔다.


이번 연구 결과는 기존의 지능형 반도체 소재 및 소자가 지닌 근원적 문제의 해결책을 제시하고 어레이 수준의 기술화 가능성을 시사한 점을 국제적으로 인정받아 지난 18일 다학제 분야 최고 수준 저널인 네이처 나노테크놀로지(Nature Nanotechnology)에 '뉴로모픽 컴퓨팅을 위한 선형 프로그래밍 가능한 2차원 할로겐화물 페로브스카이트 멤리스터 어레이(Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing)'란 제목으로 발표됐다.


연구팀 김승주 박사와 장호원 교수는 최근 차세대 태양전지 및 LED 소재로 주목받던 할라이드 페로브스카이트 소재가 높은 이온 이동도를 가진다는 특성에 착안해, 유·무기 하이브리드 소재 설계를 기반으로 뉴로모픽 소자를 개발하는 연구에 집중했다.


그 결과 연구팀은 첨단 공정으로 설계된 새로운 이차원 페로브스카이트 소재에서 이온이 반도체 표면 전면에 균일하게 분포할 수 있다는 사실을 발견할 수 있었다. 이를 통해 기존 지능형 반도체에서는 실현 불가능했던 초선형적이고 대칭적인 시냅스 가중치 조절을 성공적으로 구현했다. 이 기전은 연구에 함께한 포항공과대학교 연구팀이 제일원리 계산을 통해 이론적으로 증명했다.


그리고 개발된 소자의 성능을 활용해 하드웨어에서 인공지능 연산의 높은 정확도를 평가한 결과, MNIST와 CIFAR와 같은 작은 데이터뿐만 아니라 고해상도 이미지인 이미지넷(ImageNET) 데이터에서도 이론적 한계값과 0.08% 이내의 매우 적은 오차로 추론이 가능함을 확인했다. 더 나아가 단일 소자뿐만 아니라 어레이 수준에서도 초저전력으로 인공지능 연산을 가속할 수 있다는 사실을 미국 서던캘리포니아대학교(USC, University of Southern California)와의 공동 연구를 통해 입증했다.


이번 연구에서 개발한 기술은 3년 전 김승주 박사와 장호원 교수가 재료 분야 최고 수준 저널인 ‘머티리얼즈 투데이(Materials Today)’에 실린 주목할 만한 논문(Highlighted Paper)에서 발표한 기술을 한층 더 업그레이드한 기술로, 현재 국내 및 미국 특허 등록을 위한 심사가 진행 중이다.


연구를 지도한 장호원 교수는 “이번 연구는 차세대 지능형 반도체 소자의 근원적 문제를 해결할 수 있는 중요한 기초 자료를 제공하는 성과를 거뒀다”며 “특히 고성능의 뉴로모픽 하드웨어를 개발하기 위해서는 인공 시냅스 소재 내에 국소화된 필라멘트를 만드는 것보다 소재 전면에 균일한 이온 이동을 유도하는 것이 중요하다는 사실을 제시했다는 점에서 매우 의미가 깊다”고 밝혔다.



출처 : 인공지능신문 박현진 기자 / 2024.10.21
목록